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Abstract

We prove new lower bounds for the first eigenvalue of the Dirac operator on compact manifolds
whose Weyl tensor or curvature tensor, respectively, is divergence-free. In the special case of Einstein
manifolds, we obtain estimates depending on the Weyl tensor. © 2002 Elsevier Science B.V. All
rights reserved.
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1. Introduction

If Mn is a compact Riemannian spin manifold with positive scalar curvatureR, then each
eigenvalueλ of the Dirac operatorD satisfies the inequality

λ2 ≥ nR0

4(n − 1)
,

whereR0 is the minimum ofR onMn. The estimate is sharp in the sense that there exist
manifolds for which the lower bound is an eigenvalueλ1 of D. In this case,Mn must be an
Einstein space (see [2]). A generalization of this inequality was proved in this paper [6], in
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which a conformal lower bound for the spectrum of the Dirac operator appeared. Moreover,
for special Riemannian manifolds, better estimates for the eigenvalues of the Dirac operator
are known, see [7,8]. In this paper [5], we proved an estimate for the eigenvalues of the Dirac
operator depending on the Ricci tensor in case that the curvature tensor is harmonic. In this
note we will prove an estimate of the Dirac spectrum depending on the scalar curvature
and on the Weyl tensor for manifolds with divergence-free Weyl tensor. In particular, we
prove that a compact, conformally Ricci-flat manifold with certain nontrivial conformal
invariantν0 does not admit any harmonic spinors. A second application of our result refers to
symmetric spaces of compact type. In this case, our inequality may be simplified and depends
mainly on the scalar curvature and on the length of the Weyl tensor. Under the assumption
that the curvature tensor is harmonic, we prove in Section 4 an estimate depending on the
Ricci tensor as well as on the Weyl tensor.

2. Curvature endomorphisms of the spinor bundle

Let Mn be a Riemannian spin manifold of dimensionn ≥ 4 with Riemannian metricg
and spinor bundleS. By ∇ we denote the covariant derivative induced byg on the tangent
bundleTMn as well as the corresponding derivative in the spinor bundleS. For any vector
field X, Y onMn, we use the notation

∇X,Y := ∇X∇Y − ∇∇XY

for the tensorial derivatives of second order. ByK andC we denote the Riemannian cur-
vature tensor and the curvature tensor ofS, respectively. Then, for any vector fieldX, Y,Z

and any spinor fieldψ , we have

K(X, Y )(Z) = ∇X,YZ − ∇Y,XZ, C(X, Y )ψ = ∇X,Yψ − ∇Y,Xψ.

Given a local frame of vector fields(X1, . . . , Xn), we denote by(X1, . . . , Xn) the asso-
ciated frame defined byXk := gklXl , where(gkl) is the inverse of the matrix(gkl) with
gkl = g(Xk,Xl). For the reader’s convenience, we summarize some well-known identities:

C(X, Y ) = 1
4Xk · K(X, Y )(Xk) = −1

4K(X, Y )(Xk) · Xk, (1)

C(X, Y ) · Z − Z · C(X, Y ) = K(X, Y )(Z), (2)

Xk · C(Xk, Y ) = 1
2Ric(Y ) = C(Xk, Y ) · Xk, (3)

Xk · K(X,Xk)(Y ) = 2C(X, Y ) + g(Ric(X), Y ), (4)

Xk · ∇X,Xk
ψ = ∇XDψ, (5)

Xk · ∇Xk,Xψ = ∇XDψ + 1
2Ric(X) · ψ, (6)

Xk · Ric(Xk) = Ric(Xk) · Xk = −R, (7)

where Ric is the Ricci tensor,R the scalar curvature andD the Dirac operator locally defined
by Ric(X) := K(X,Xk)(X

k), R = g(Ric(Xk),X
k) andDψ = Xk · ∇Xk

ψ , respectively.



198 T. Friedrich, K.-D. Kirchberg / Journal of Geometry and Physics 41 (2002) 196–207

For any vector fieldX andY , we consider the endomorphismE(X, Y ) of S or Γ (S),
respectively, locally given by

E(X, Y ) := −C(Xk, Y ) · C(Xk,X).

SinceC(X, Y ) is anti-selfadjoint with respect to the Hermitian scalar product〈·, ·〉 on S,
the endomorphismE(X, Y ) has a similar property

C(X, Y )∗ = −C(X, Y ), E(X, Y )∗ = E(Y,X). (8)

The endomorphismF of S defined as the contraction ofE,

F := E(Xk,X
k) = −C(Xk,Xl)C(Xk,Xl),

is selfadjoint and nonnegative, i.e.,

F ∗ = F, 〈Fψ,ψ〉 ≥ 0. (9)

We denote byW the Weyl tensor of the Riemannian manifold and we introduce the following
endomorphisms acting in the spinor bundle:

B(X, Y ) := 1
4Xk · W(X, Y )(Xk), G(X, Y ) := −B(Xk, Y )B(Xk,X),

H := G(Xk,X
k) = −B(Xk,Xl)B(Xk,Xl).

We collect some properties of these endomorphisms:

B(X, Y )∗ = −B(X, Y ), G(X, Y )∗ = G(Y,X), (10)

Xk · B(Xk, Y ) = 0 = B(Xk, Y ) · Xk, (11)

H ∗ = H, 〈Hψ,ψ〉 ≥ 0, (12)

B(X, Y ) · Z − Z · B(X, Y ) = W(X, Y )(Z), (13)

F = H + 1

2(n − 2)

∣∣∣∣Ric − R

n

∣∣∣∣
2

+ R2

4n(n − 1)
. (14)

Let ν(x) denote the smallest eigenvalue ofH at the pointx ∈ Mn. Its infimum

ν0 := inf {ν(x) : x ∈ Mn} ≥ 0

will occur in our estimates of the eigenvalues of the Dirac operatorD. If ψ is a parallel spinor
(∇ψ = 0), then, for all vector fieldsX andY , it follows thatC(X, Y ) · ψ = 0 and, hence,
Fψ = 0. Thus, the relation (14) shows that the Ricci tensor as well as the functionν ≥ 0 are
obstructions for the existence of parallel spinors. Moreover, the Schrödinger–Lichnerowicz
formula

∇∗∇ = D2 − 1
4R (15)

implies that, on compact manifolds with vanishing scalar curvature, each harmonic spinor
is parallel. Hence, asMn is compact, Ricci flat andν0 > 0, there are no harmonic spinors.
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3. Estimate for manifolds with divergence-free Weyl tensor

In this section, we assume that the Weyl tensorW of Mn is divergence-free, i.e., for all
vector fieldsY and all local frames(X1, . . . , Xn), W satisfies the condition

(∇Xk
W)(Xk, Y ) = 0. (16)

By definition ofB, this implies

(∇Xk
B)(Xk, Y ) = 0. (17)

For any real parametert ∈ R, we consider the differential operatorP t : Γ (S) → Γ (TMn⊗
S) locally defined byP tψ := Xk ⊗ P t

Xk
ψ and

P t
Xψ := ∇Xψ + 1

n
X · Dψ − tB(X,Xk) · ∇Xk

ψ. (18)

Using the twistor operatorD : Γ (S) → Γ (TMn ⊗ S) given byDψ := Xk ⊗ (∇Xk
ψ +

(1/n)Xk · Dψ), this may be rewritten as

P tψ := Dψ − tXk ⊗ B(Xk,X
l) · ∇Xl

ψ. (19)

The image ofD is contained in the kernel of the Clifford multiplication, i.e., it holds that

Xk ·DXk
ψ = 0. (20)

Thus, by (11) and (20), it follows that:

Xk · P t
Xk

ψ = 0. (21)

Lemma 3.1. Suppose that the Weyl tensor W is divergence-free. Then, any spinor fieldψ

satisfies the equation

|P tψ |2 = |∇ψ |2 − 1

n
|Dψ |2 − t〈Hψ,ψ〉 + t2〈G(Xk,Xl)∇Xk

ψ,∇Xl
ψ〉

− 2t div〈Bψ,∇ψ〉, (22)

where〈Bψ,∇ψ〉 is the vector field locally defined by〈Bψ,∇ψ〉 := 〈B(Xi,Xk)ψ,∇Xk
ψ〉

Xi .

Proof. Using the formulas (10), (11) and (18), we calculate

|P tψ |2 = 〈P t
Xi
ψ, P t

Xiψ〉 = |Dψ |2 − 2t〈∇Xi
ψ,B(Xi,Xk)∇Xk

ψ〉
+ t2〈B(Xi,X

k)∇Xk
ψ,B(Xi,Xl)∇Xl

ψ〉.
Thus, we obtain

|P tψ |2 = |∇ψ |2 − 1

n
|Dψ |2 − 2t〈∇Xi

ψ,B(Xi,Xk)∇Xk
ψ〉

+ t2〈G(Xk,Xl)∇Xk
ψ,∇Xl

ψ〉. (∗)
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Let x ∈ Mn be any point and let(X1, . . . , Xn) be an orthonormal frame in a neighborhood
of x with (∇Xk)x = 0. Then, we have at the pointx

〈∇Xi
ψ,B(Xi,Xk)∇Xk

ψ〉 = Xi(〈ψ,B(Xi,Xk)∇Xk
ψ〉)

− 〈ψ, (∇Xi
B)(Xi,Xk)∇Xk

ψ〉
− 〈ψ,B(Xi,Xk)∇Xi

∇Xk
ψ〉

(17)= div〈Bψ,∇ψ〉 − 1
2〈ψ,B(Xi,Xk)C(Xi,Xk)ψ〉

(11)= div〈Bψ,∇ψ〉 − 1
2〈ψ,B(Xi,Xk)B(Xi,Xk)ψ〉

= div〈Bψ,∇ψ〉 + 1
2〈ψ,Hψ〉.

Inserting this into (∗) we obtain (22). �
Let us introduce the numberµ0 measuring the maximum of the norm of the Weyl tensor,

µ2
0 = max( 1

16‖WXYijX
i · Xj‖2 : 〈X, Y 〉 = 0, |X| = |Y | = 1).

Then, for any pointx ∈ Mn and any orthonormal basis(X1, . . . , Xn) of TxMn, we have

|〈G(Xk,Xl)∇Xk
ψ,∇Xl

ψ〉| = |〈B(Xi,X
k)∇Xk

ψ,B(Xi,Xl)∇Xl
ψ〉|

≤
∑
i,k,l

|〈B(Xi,Xk)∇Xk
ψ,B(Xi,Xl)∇Xl

ψ〉|

≤
∑
i,k,l

|B(Xi,Xk)∇Xk
ψ | · |B(Xi,Xl)∇Xl

ψ |

≤
∑
i,k,l

‖B(Xi,Xk)‖‖B(Xi,Xl)‖|∇Xk
ψ ||∇Xl

ψ |

≤ nµ2
0


∑

k,l

|∇Xk
ψ | |∇Xl

ψ |

 = nµ2

0

(∑
k

|∇Xk
ψ |
)2

≤ n2µ2
0

(∑
k

|∇Xk
ψ |2

)
= n2µ2

0|∇ψ |2.

Thus, we obtain the estimate

|〈G(Xk,Xl)∇Xk
ψ,∇Xl

ψ〉| ≤ n2µ2
0|∇ψ |2. (23)

Furthermore, let us denote the minimum ofR onMn byR0. Then, applying (15), (22) and
(23) to an eigenspinorψ of the Dirac operator(Dψ = λψ), we have

0 ≤
∫
Mn

|P tψ |2

=
∫
Mn

(
n − 1

n
λ2|ψ |2 − R

4
|ψ |2 − t〈Hψ,ψ〉 + t2〈G(Xk,Xl)∇Xk

ψ,∇Xl
ψ〉
)

≤
(
n − 1

n
λ2 − R0

4
− ν0t + n2µ2

0

(
λ2 − R0

4

)
t2
)

·
∫
Mn

|ψ |2.
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This implies the inequality

n − 1

n
λ2 − R0

4
− ν0t + n2µ2

0

(
λ2 − R0

4

)
t2 ≥ 0,

which is equivalent to

λ2 ≥ n

4
· R0 + 4ν0t + n2R0µ

2
0t

2

(n − 1) + n3µ2
0t

2
(∀t ∈ R). (24)

By computing the maximum of the right side with respect to the parametert , we obtain the
main theorem of this section.

Theorem 3.1. LetMn be a compact Riemannian spin manifold with divergence-free Weyl
tensor. Then, for any eigenvalueλ of the Dirac operator, we have the inequality

λ2 ≥ nR0

4(n − 1)
+ 2ν2

0

nµ2
0(R0 +

√
R2

0 + (n − 1/n)(4ν0/µ0)2)

. (25)

Moreover, forR0 < 0, this lower bound is positive if the conditionν0 > 1
2n|R0|µ0

is satisfied.

The divergence of the Weyl tensor is given by the well-known identity

(∇Xk
W)(X, Y )(Xk) = (n − 3)((∇XT )(Y ) − (∇Y T )(X)), (26)

where the tensorT is defined by

T (X) := 1

n − 2

(
R

2(n − 1)
X − Ric(X)

)
.

In particular, any Einstein manifold has a divergence-free Weyl tensor.

Corollary 3.1. The inequality(25)holds for any compact Einstein spin manifold.

Corollary 3.2. LetMn be a compact Riemannian spin manifold with divergence-free Weyl
tensor and vanishing scalar curvature. Then, we have the estimate

λ2 ≥ ν0

2µ0
√
n(n − 1)

. (27)

Consider a compact Riemannian spin manifold(Mn, g∗) and suppose that there exists a
conformally equivalent Ricci-flat metricg = ef · g∗. Since the Weyl tensor is a conformal
invariant, the conditionν0 > 0 is conformally invariant, too. The same is true for the
dimension of the space of harmonic spinors.

Corollary 3.3. A compact, conformally Ricci-flat spin manifold withν0 > 0does not admit
harmonic spinors.
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In the case of an even-dimensional manifold, the spinor bundle splits into the bundle
of positive and negative spinors, respectively. We can introduce two smallest eigenvalues
ν±

0 and Corollary 3.3 holds in any of these two bundles.
The lower bound for the eigenvalues of the Dirac operator proved in Theorem 3.1 depends

on the minimum of the scalar curvature, on the maximumµ2
0 and on the smallest eigenvalue

of the nonnegative endomorphism

H := − 1

16

∑
k,l

∑
α,β,γ,δ

WklαβWklγ δX
α · Xβ · Xγ · Xδ

acting on the spinor bundle. Using the grading of the Clifford algebra, we decompose
the endomorphismH := H0 + H2 + H4 into three parts, whereH0 is a scalar andH2, H4
are the elements of the Clifford algebra of degree 2 and 4, respectively. It is easy to compute
H0,

H0 = 1
8|W |2.

SinceH and H4 are hermitean andH2 is anti-hermitean, we conclude thatH2 = 0.
Consequently, we obtain the formula

ν0 = min(1
8|W |2 + 〈H4 · ψ,ψ〉 : |ψ | = 1),

whereH4 is given by

H4 = −1

2

∑
k,l

∑
α<β<γ<δ

(WklαβWklγ δ − WklαγWklβδ + WklαδWklβγ )X
α · Xβ · Xγ · Xδ.

In the four-dimensional case, the endomorphismX1 · X2 · X3 · X4 acts on the two parts of
the spinor bundleS = S+ ⊕ S− by multiplication by±1 and we obtain the simple formula

ν0 = min( 1
16|W + ∗W |2, 1

16|W − ∗W |2).
For example, consider the square of the Dirac operator acting on the bundleS+ of positive
spinors over a four-dimensional Kähler–Einstein manifold. The positive partW+ of the
Weyl tensor acting onΛ2+ has the diagonal formW+ = diag(−1

6R,−1
6R, 1

3R) (see [1])
and, consequently, we compute

ν+
0 = 1

6
R2, µ2

0 = 1

8 · 9
R2.

The estimate of Theorem 3.1 yields the inequalityλ2 ≥ 1
2R and this is precisely the lower

bound for the eigenvalues of the Dirac operator on any four-dimensional Kähler manifold
(see [4,7]).

On the other hand, if the Weyl tensor of the manifoldMn (n ≥ 5) satisfies the relation∑
k,l

(WklαβWklγ δ + WklαγWklδβ + WklαδWklβγ ) = 0,

thenH4 vanishes. This situation occurs, for example, ifMn is an irreducible symmetric
space of compact type. The proof is an easy computation using the well-known formulas
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for the curvature tensor of a symmetric space, which is why we shall only sketch it shortly.
First, we remark that the following relation holds on any Einstein space:

∑
k,l

WklαβWklγ δ =
∑
k,l

RklαβRklγ δ + 4R

n(n − 1)
Rαβγ δ + 2R2

n2(n − 1)2
(δαγ δβδ − δαδδβγ ).

In case of a symmetric spaceMn = G/K, we obtain the formula∑
k,l

RklαβRklγ δ = (ΩG − ΩK)Rαβγ δ,

whereΩG andΩK are the Casimir operators acting on the Lie algebras of the groupG

andK, respectively. The result follows now from the first Bianchi identity of the curvature
tensor.

Proposition 3.1. LetMn be an irreducible symmetric space of compact type. Then,

ν0 = 1
8|W |2.

It is well known that a compact, symmetric space withλ2 = (nR/4(n − 1)) > 0
is a sphere. This result follows immediately from our inequality. Indeed, in this caseMn is
an irreducible Einstein manifold (see [2,3]) and, furthermore, we haveν0 = 0. Since the
manifold is symmetric, we conclude that the Weyl tensor vanishes, i.e.,Mn is a space of
constant curvature.

4. Estimates in case of divergence-free curvature tensor

In this section, we assume that the Riemannian curvature tensorK is divergence-free,
i.e., locally we have the equality

(∇Xk
K)(Xk, Y ) = 0 (28)

for each vector fieldY . The Bianchi identity implies the general relation

(∇Xk
K)(X, Y )(Xk) = (∇Y Ric)(X) − (∇X Ric)(Y ). (29)

Thus, (28) is equivalent to

(∇X Ric)(Y ) = (∇Y Ric)(X). (30)

In particular, the scalar curvatureR is constant. Moreover, (28) implies

(∇Xk
C)(Xk, Y ) = 0. (31)

For t ∈ R, we now consider the operator

Qt : Γ (S) → Γ (TMn ⊗ S)
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defined byQtψ := Xk ⊗ Qt
Xk

ψ , and

Qt
Xψ := DXψ − t · C(X,Xk) · ∇Xk

ψ.

A straightforward calculation yields

|Qtψ |2 = |Dψ |2 + 2t〈C(Xk,Xl)∇Xk
ψ,∇Xl

ψ〉 + t

n
Re〈Dψ,Ric(Xk)∇Xk

ψ〉
+ t2〈E(Xk,Xl)∇Xk

ψ,∇Xl
ψ〉. (32)

Furthermore, by Lemmas 1.2 and 1.4 in [5] and our assumption, there are equations

〈C(Xk,Xl)∇Xk
ψ,∇Xl

ψ〉 = div〈Cψ,∇ψ〉 − 1
2〈ψ,Fψ〉, (33)

Re〈ψ,Ric(Xk)∇Xk
Dψ〉 = |∇Dψ |2 − |(D2 − 1

4R)ψ |2 − 1
4R|∇ψ |2 + 1

4|Ric|2|ψ |2
+ 〈∇Ric(Xk)ψ,∇Xkψ〉 − div(Xψ), (34)

whereXψ is a vector field depending onψ . From (14) and (32)–(34), we obtain the basic
Weitzenböck formula of this section.

Lemma 4.1. LetMn be a Riemannian spin manifold with divergence-free curvature tensor
and letλ be any eigenvalue of the Dirac operator. Then, for any corresponding eigenspinor
ψ and for all t ∈ R, we have the equation

|Qtψ |2 = |∇ψ |2 − λ2

n
|ψ |2 + t

n
〈∇Ric(Xk)ψ,∇Xkψ〉

+ t

n

(
λ2 − R

4

)(
|∇ψ |2 −

(
λ2 − R

4

)
|ψ |2

)
− t〈ψ,Hψ〉

− t

4n

(
n + 2

n − 2

∣∣∣∣Ric − R

n

∣∣∣∣
2

+ R2

n(n − 1)

)
|ψ |2 + div

(
2t〈Cψ,∇ψ〉− t

n
Xψ

)

+ t2〈E(Xk,Xl)∇Xk
ψ,∇Xl

ψ〉.

We consider the curvature tensorK as an endomorphism ofΛ2Mn by the usual definition

K(ui ∧ uj ) := 1
2g(K(Xi,Xj )(Xk),Xl)u

k ∧ ul,

where(u1, . . . , un) denotes the coframe dual to the local frame(X1, . . . , Xn). ThenK is
selfadjoint with respect to the scalar product onΛ2Mn induced by the Riemannian metricg.
LetMn be compact and denote byσ the maximum of the absolute values of the eigenvalues
ofK onΛ2Mn. Then we estimate the operator norm of the endomorphismC(Xi,Xj ) acting
on the spinor bundle

‖C(Xi,Xj )‖ ≤ 1

2

∑
k<l

|g(K(Xi,Xj )(Xk),Xl)| · ‖Xk · Xl‖

= 1

2

∑
k<l

|g(K(Xi,Xj )(Xk),Xl)| ≤ 1

2

(
n

2

)
σ.
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Using this upper bound, we obtain

|〈E(Xk,Xl)∇Xk
ψ,∇Xl

ψ〉| ≤
∑
i,k,l

‖C(Xi,Xk)‖ · ‖C(Xi,Xl)‖ · |∇Xk
ψ | · |∇Xl

ψ |

≤ n

4

(
n

2

)2

σ 2


∑

k,l

|∇Xk
ψ ||∇Xl

ψ |



≤ n2

4

(
n

2

)2

σ 2

(∑
k

|∇Xk
ψ |2

)
=
(
n

2

(
n

2

)
σ

)2

|∇ψ |2,

and, consequently, the inequality

|〈E(Xk,Xl)∇Xk
ψ,∇Xl

ψ〉| ≤
(
n

2

(
n

2

)
σ

)2

|∇ψ |2. (35)

If κ denotes the maximum of all eigenvalues of the Ricci tensor onMn, then we have

〈∇Ric(Xk)ψ,∇Xkψ〉 ≤ κ|∇ψ |2. (36)

Then, by Lemma 4.1, (35) and (36), for allt ≥ 0, we obtain(
n − 1

n
+ κ

n
t +

(
n

2

(
n

2

)
σ

)2

t2

)
λ2 ≥ + 1

4n

(
n + 2

n − 2

∣∣∣∣Ric − R

n

∣∣∣∣
2

0
+ R2

n(n − 1)

)
t

+ ν0t+R

4

(
1 + κ

n
t+
(
n

2

(
n

2

)
σ

)2

t2

)
,

(37)

where|Ric − (R/n)|0 denotes the minimum of the length onMn. Insertingλ = 0 in this
inequality, we obtain the following theorem.

Theorem 4.1. Let Mn be a compact Riemannian spin manifold with divergence-free
curvature tensor and scalar curvatureR ≤ 0, such that the condition

n + 2

n − 2

∣∣∣∣Ric − R

n

∣∣∣∣
2

0
+ R2

n(n − 1)
+ 4nν0 > |R|

(
κ + n2

(
n

2

)
σ

)
(38)

is satisfied. Then, there are no harmonic spinors.

For simplicity, let us introduce the notations

a := 4n(n − 1)ν0 + (n − 1)(n + 2)

n − 2

∣∣∣∣Ric − R

n

∣∣∣∣
2

0
− R

(
κ − R

n

)
,

b := 1

2
n2
(
n

2

)3

σ 2, A± :=
√
b2R2 + ab(a + Rκ) ± bR.
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Moreover, using the new parameters := (t/n − 1) ≥ 0, the inequality (37) can be
written as

λ2 ≥ nR

4(n − 1)
+ s

4(n − 1)
· a − bRs

1 + κs + bs2
. (39)

Calculating the maximum of the right side with respect tos ≥ 0, we obtain our main result.

Theorem 4.2. LetMn be a nonflat compact Riemannian spin manifold with divergence-free
curvature tensor and letλ be any eigenvalue of the Dirac operator. Then, we have the
estimate

λ2 >
nR

4(n − 1)
+ a

4(n − 1)
· A−

2ab+ κA+
. (40)

Remark that in caseR > 0, a > 0, this lower bound is greater thannR/4(n − 1).
If R ≤ 0, the lower bound is positive under the condition

a + Rκ > (n − 1)|R|
(
κ + n2

(
n

2

)
σ

)
. (41)

Proof. It remains to show that, for the first eigenvalueλ1 ofD, in (40) equality cannot occur.
Let us assume the counterpart. Then, any eigenspinorψ corresponding toλ1 satisfies the
equationQt0ψ = 0 with the optimal parametert0 > 0. By (3) and (20),Qt0ψ = 0 implies

Ric(Xk)∇Xk
ψ = 0. (∗∗)

Moreover, the limiting case of (40) implies that in the inequality for‖C(Xi,Xj )‖ we have
an equality, i.e.,

‖C(Xi,Xj )‖ = 1

2

(
n

2

)
σ.

Hence,Mn is a space of constant-sectional curvature. In particular,Mn is Einstein
(Ric = R/n) and (∗∗) implies 0= R · Dψ = R · λ1 · ψ . Consequently, the Ricci tensor
vanishes andMn is flat, a contradiction. �

The curvature tensor of any Einstein manifold of dimensionn ≥ 4 is divergence-free.
In this special case, we haveκ = R/n and the numbera simplifies toa = 4n(n − 1)ν0.

Example 4.1. An application of the estimate (40) in case of the 3-dimensional manifold
M3 = S1 × S2 yields the inequality

λ2 > 3
4(1 + 0.006).

Finally, we remark that we generalized Corollary 3.2.

Corollary 4.1. Let Mn be a compact Riemannian spin manifold with divergence-free
curvature tensor and vanishing scalar curvature such that at least one of the numbers
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ν0 or |Ric|0, respectively, is not zero. Then, all eigenvaluesλ of the Dirac operator satisfy
the inequality

λ2 >
(n + 2)|Ric|20 + 4n(n − 2)ν0

4(n − 2)(κ +
(
n

2

)
σ
√
n(n − 1))

.
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